Ship-Ship-Hooray! FREE 2-Day Air* on $25+ Details >
Calculus With Finite Mathematics

Calculus With Finite Mathematics - 99 edition

ISBN13: 978-0395708255

Cover of Calculus With Finite Mathematics 99 (ISBN 978-0395708255)
ISBN13: 978-0395708255
ISBN10: 0395708257
Edition: 99
Copyright: 1999
Publisher: Houghton Mifflin Harcourt
Published: 1999
International: No

Calculus With Finite Mathematics - 99 edition

ISBN13: 978-0395708255

Geoffrey C. Berresford and Andrew M. Rockett

ISBN13: 978-0395708255
ISBN10: 0395708257
Edition: 99
Copyright: 1999
Publisher: Houghton Mifflin Harcourt
Published: 1999
International: No

Berresford's lively approach to calculus, now available for a one- or two-term course in applied calculus and finite mathematics, is designed to enrich learning for students majoring in business, economics, life sciences, and social sciences. The text's engaging approach shows students how to use calculus to predict the national debt, to study global warming, to maximize longevity, to analyze trends in the AIDS epidemic, to estimate the dangers of cigarette smoking, and in countless other relevant applications. A wealth of exercise sets providing numerous additional applications helps demonstrate for students that calculus is more than merely manipulating abstract symbols, but rather is deeply connected to everyday life.

  • The text provides more graphing calculator examples and exercises than any other book; these may be omitted without loss of continuity, making use of a graphing calculator an optional tool for exploration.
  • Numerous applications of high interest to students cover a wide range of subjects, from sports to genetic engineering, spread of disease, gambling, personal wealth, and environmental issues, to name a few.
  • Unique to Berresford's texts, interactive "Practice Problems" with full solutions are offered after more difficult worked-out examples to provide students with extra practice and immediate feedback on their understanding of complex concepts.
  • Seven to ten extensive writing and/or collaborative exercises conclude each chapter.
  • Margin annotations restate much of the mathematics in words and provide explanations for the steps of a solution.
  • End-of-section summaries, in addition to more comprehensive end-of-chapter summaries, help students retain concepts as they progress through the text.
  • Instructors may select applications at a glance from the Application Index at the front of the text.

Table of Contents

Note: Each chapter concludes with a Chapter Summary with Hints and Suggestions, Review Exercises, and Projects and Essays.

0. Functions

Real Numbers, Inequalities and Lines
Functions, Continued
Exponential Functions
Logarithmic Functions

I. Finite Mathematics

1. Mathematics of Finance

Simple Interest
Compound Interest

2. Matrices and Systems of Equations

Systems of Two Linear Equations in Two Variables
Matrices and Linear Equations in Two Variables
Matrix Row Reduction and Systems of Linear Equations
Matrix Arithmetic
Inverse Matrices and Systems of Linear Equations
Three Applications

3. Linear Programming

Linear Inequalities
Two-Variable Linear Programming Problems
The Simplex Method for Standard Maximum Problems
Duality and Standard Minimum Problems
Non-Standard Problems

4. Probability

Counting Techniques
Probability Spaces
Conditional Probability and Independence
Random Variables and Distributions

5. Statistics

Random Samples and Data Organization
Measures of Central Tendency
Measures of Variations
Normal Distributions

II. Calculus

6. Derivatives and Their Uses

Limits and Continuity
Slopes, Rates of Change, and Derivatives
Some Differentiation Formulas
The Product and Quotient Rules
Higher-Order Derivatives
The Chain Rule and the Generalized Power Rule
Nondifferentiable Functions

7. Further Applications of Derivatives

Graphing Using the First Derivative
Graphing Using the First and Second Derivatives
Further Applications of Optimization
Optimizing Lot Size and Harvest Size
Implicit Differentiation and Related Rates

8. Exponential and Logarithmic Functions

Review of Exponential and Logarithmic Functions
Differentiation of Exponential and Logarithmic Functions
Two Applications to Economics: Related Rates and Elasticity of Demand

9. Integration and Its Applications

Integration Using Logarithmic and Exponential Functions
Definite Integrals and Areas
Further Applications of Definite Integrals: Average Value and Area Between Curves
Two Applications to Economics: Consumers' Surplus and Income Distribution
Integration by Substitution

10. Integration Techniques and Differential Equations

Integration by Parts
Integration Using Tables
Improper Integrals
Numerical Integration
Differential Equations
Further Applications of Differential Equations: Three Models of Growth

11. Calculus of Several Variables

Functions of Several Variables
Partial Derivatives
Optimizing Functions of Several Variables
Least Squares
LaGrange Multipliers and Constrained Optimization
Total Differentials and Approximate Changes
Multiple Integrals

  • Marketplace
  • From