Ship-Ship-Hooray! Free Shipping on $25+ Details >

Textbooks |
Buy Textbooks |
Computer Science & Technology Textbooks |
Electronics Materials Textbooks

Cover type: Print On Demand

Edition: 05

Copyright: 2005

Publisher: John Wiley & Sons, Inc.

Published: 2005

International: No

Edition: 05

Copyright: 2005

Publisher: John Wiley & Sons, Inc.

Published: 2005

International: No

List price: $173.00

All of our used books are 100% hand-inspected and guaranteed! Happy you, happy us.

FREE Shipping on $25+

Order $25 or more and the shipping's on us. Marketplace items and other exclusions apply.

Ships tomorrow

Order by noon CST (Mon-Fri, excluding holidays). Some restrictions apply.

Easy 30-Day Returns

Not the right book for you? We accept returns within 30 days of purchase. Access codes are non-refundable once revealed or redeemed.

Ships directly from us

You Save $135.18 (78%)

$37.82

Condition: Very Good
**100% Satisfaction Guarantee**

We hand-inspect every one of our used books.

We hand-inspect every one of our used books.

Well, that's no good. Unfortunately, this edition is currently out of stock. Please check back soon.

Also available in the Marketplace starting at $36.06

Price | Condition | Seller | Comments |
---|

A thorough introduction to fundamental principles and applications.

From its beginnings in metallurgy and ceramics, materials science now encompasses such high- tech fields as microelectronics, polymers, biomaterials, and nanotechnology. Electronic Materials Science presents the fundamentals of the subject in a detailed fashion for a multidisciplinary audience. Offering a higher-level treatment than an undergraduate textbook provides, this text benefits students and practitioners not only in electronics and optical materials science, but also in additional cutting-edge fields like polymers and biomaterials.

Readers with a basic understanding of physical chemistry or physics will appreciate the text's sophisticated presentation of today's materials science. Instructive derivations of important formulae, usually omitted in an introductory text, are included here. This feature offers a useful glimpse into the foundations of how the discipline understands such topics as defects, phase equilibria, and mechanical properties. Additionally, concepts such as reciprocal space, electron energy band theory, and thermodynamics enter the discussion earlier and in a more robust fashion than in other texts.

Electronic Materials Science also features:

- An orientation towards industry and academia drawn from the author's experience in both arenas
- Information on applications in semiconductors, optoelectronics, photocells, and nanoelectronics
- Problem sets and important references throughout
- Flexibility for various pedagogical needs

Treating the subject with more depth than any other introductory text, Electronic Materials Science prepares graduate and upper-level undergraduate students for advanced topics in the discipline and gives scientists in associated disciplines a clear review of the field and its leading technologies.

Preface.

**1 Introduction to Electronic Materials Science.**

1.1 Introduction.

1.2 Structure and Diffraction.

1.3 Defects.

1.4 Diffusion.

1.5 Phase Equilibria.

1.6 Mechanical Properties.

1.7 Electronic Structure.

1.8 Electronic Properties and Devices.

1.9 Electronic Materials Science.

**2 Structure of Solids.**

2.1 Introduction.

2.2 Order.

2.3 The Lattice.

2.4 Crystal Structure.

2.5 Notation.

2.6 Lattice Geometry.

2.7 The Wigner-Seitz Cell.

2.8 Crystal Structures.

Related Reading.

Exercises.

**3 Diffraction.**

3.1 Introduction.

3.2 Phase Difference and Bragg's Law.

3.3 The Scattering Problem.

3.4 Reciprocal Space, RESP.

3.5 Diffraction Techniques.

3.6 Wave Vector Representation.

Related Reading.

Exercises.

**4 Defects in Solids.**

4.1 Introduction.

4.2 Why Do Defects Form?

4.3 Point Defects.

4.4 The Statistics of Point Defects.

4.5 Line Defects--Dislocations.

4.6 Planar Defects.

4.7 Three-Dimensional Defects.

Related Reading.

Exercises.

**5 Diffusion in Solids.**

5.1 Introduction to Diffusion Equations.

5.2 Atomistic Theory of Diffusion: Fick's Laws and a Theory for the Diffusion Construct D.

5.3 Random Walk Problem.

5.4 Other Mass Transport Mechanisms.

5.5 Mathematics of Diffusion.

Related Reading.

Exercises.

**6 Phase Equilibria.**

6.1 Introduction.

6.2 The Gibbs Phase Rule.

6.3 Nucleation and Growth of Phases.

Related Reading.

Exercises.

**7 Mechanical Properties of Solids--Elasticity.**

7.1 Introduction.

7.2 Elasticity Relationships.

7.3 An Analysis of Stress by the Equation of Motion.

7.4 Hooke's Law for Pure Dilatation and Pure Shear.

7.5 Poisson's Ratio.

7.6 Relationships Among E, e, and v.

7.7 Relationships Among E, G, and n.

7.8 Resolving the Normal Forces.

Related Reading.

Exercises.

**8 Mechanical Properties of Solids--Plasticity.**

8.1 Introduction.

8.2 Plasticity Observations.

8.3 Role of Dislocations.

8.4 Deformation of Noncrystalline Materials.

Related Reading.

Exercises.

**9 Electronic Structure of Solids.**

9.1 Introduction.

9.2 Waves, Electrons, and the Wave Function.

9.3 Quantum Mechanics.

9.4 Electron Energy Band Representations.

9.5 Real Energy Band Structures.

9.6 Other Aspects of Electron Energy Band Structure.

Related Reading.

Exercises.

**10 Electronic Properties of Materials.**

10.1 Introduction.

10.2 Occupation of Electronic States.

10.3 Position of the Fermi Energy.

10.4 Electronic Properties of Metals: Conduction and Superconductivity.

10.5 Semiconductors.

10.6 Electrical Behavior of Organic Materials.

Related Reading.

Exercises.

**11 Junctions and Devices and the Nanoscale.**

11.1 Introduction.

11.2 Junctions.

11.3 Selected Devices.

11.4 Nanostructures and Nanodevices.

Index.

Summary

A thorough introduction to fundamental principles and applications.

From its beginnings in metallurgy and ceramics, materials science now encompasses such high- tech fields as microelectronics, polymers, biomaterials, and nanotechnology. Electronic Materials Science presents the fundamentals of the subject in a detailed fashion for a multidisciplinary audience. Offering a higher-level treatment than an undergraduate textbook provides, this text benefits students and practitioners not only in electronics and optical materials science, but also in additional cutting-edge fields like polymers and biomaterials.

Readers with a basic understanding of physical chemistry or physics will appreciate the text's sophisticated presentation of today's materials science. Instructive derivations of important formulae, usually omitted in an introductory text, are included here. This feature offers a useful glimpse into the foundations of how the discipline understands such topics as defects, phase equilibria, and mechanical properties. Additionally, concepts such as reciprocal space, electron energy band theory, and thermodynamics enter the discussion earlier and in a more robust fashion than in other texts.

Electronic Materials Science also features:

- An orientation towards industry and academia drawn from the author's experience in both arenas
- Information on applications in semiconductors, optoelectronics, photocells, and nanoelectronics
- Problem sets and important references throughout
- Flexibility for various pedagogical needs

Treating the subject with more depth than any other introductory text, Electronic Materials Science prepares graduate and upper-level undergraduate students for advanced topics in the discipline and gives scientists in associated disciplines a clear review of the field and its leading technologies.

Table of Contents

Preface.

**1 Introduction to Electronic Materials Science.**

1.1 Introduction.

1.2 Structure and Diffraction.

1.3 Defects.

1.4 Diffusion.

1.5 Phase Equilibria.

1.6 Mechanical Properties.

1.7 Electronic Structure.

1.8 Electronic Properties and Devices.

1.9 Electronic Materials Science.

**2 Structure of Solids.**

2.1 Introduction.

2.2 Order.

2.3 The Lattice.

2.4 Crystal Structure.

2.5 Notation.

2.6 Lattice Geometry.

2.7 The Wigner-Seitz Cell.

2.8 Crystal Structures.

Related Reading.

Exercises.

**3 Diffraction.**

3.1 Introduction.

3.2 Phase Difference and Bragg's Law.

3.3 The Scattering Problem.

3.4 Reciprocal Space, RESP.

3.5 Diffraction Techniques.

3.6 Wave Vector Representation.

Related Reading.

Exercises.

**4 Defects in Solids.**

4.1 Introduction.

4.2 Why Do Defects Form?

4.3 Point Defects.

4.4 The Statistics of Point Defects.

4.5 Line Defects--Dislocations.

4.6 Planar Defects.

4.7 Three-Dimensional Defects.

Related Reading.

Exercises.

**5 Diffusion in Solids.**

5.1 Introduction to Diffusion Equations.

5.2 Atomistic Theory of Diffusion: Fick's Laws and a Theory for the Diffusion Construct D.

5.3 Random Walk Problem.

5.4 Other Mass Transport Mechanisms.

5.5 Mathematics of Diffusion.

Related Reading.

Exercises.

**6 Phase Equilibria.**

6.1 Introduction.

6.2 The Gibbs Phase Rule.

6.3 Nucleation and Growth of Phases.

Related Reading.

Exercises.

**7 Mechanical Properties of Solids--Elasticity.**

7.1 Introduction.

7.2 Elasticity Relationships.

7.3 An Analysis of Stress by the Equation of Motion.

7.4 Hooke's Law for Pure Dilatation and Pure Shear.

7.5 Poisson's Ratio.

7.6 Relationships Among E, e, and v.

7.7 Relationships Among E, G, and n.

7.8 Resolving the Normal Forces.

Related Reading.

Exercises.

**8 Mechanical Properties of Solids--Plasticity.**

8.1 Introduction.

8.2 Plasticity Observations.

8.3 Role of Dislocations.

8.4 Deformation of Noncrystalline Materials.

Related Reading.

Exercises.

**9 Electronic Structure of Solids.**

9.1 Introduction.

9.2 Waves, Electrons, and the Wave Function.

9.3 Quantum Mechanics.

9.4 Electron Energy Band Representations.

9.5 Real Energy Band Structures.

9.6 Other Aspects of Electron Energy Band Structure.

Related Reading.

Exercises.

**10 Electronic Properties of Materials.**

10.1 Introduction.

10.2 Occupation of Electronic States.

10.3 Position of the Fermi Energy.

10.4 Electronic Properties of Metals: Conduction and Superconductivity.

10.5 Semiconductors.

10.6 Electrical Behavior of Organic Materials.

Related Reading.

Exercises.

**11 Junctions and Devices and the Nanoscale.**

11.1 Introduction.

11.2 Junctions.

11.3 Selected Devices.

11.4 Nanostructures and Nanodevices.

Index.

Publisher Info

Publisher: John Wiley & Sons, Inc.

Published: 2005

International: No

Published: 2005

International: No

A thorough introduction to fundamental principles and applications.

From its beginnings in metallurgy and ceramics, materials science now encompasses such high- tech fields as microelectronics, polymers, biomaterials, and nanotechnology. Electronic Materials Science presents the fundamentals of the subject in a detailed fashion for a multidisciplinary audience. Offering a higher-level treatment than an undergraduate textbook provides, this text benefits students and practitioners not only in electronics and optical materials science, but also in additional cutting-edge fields like polymers and biomaterials.

Readers with a basic understanding of physical chemistry or physics will appreciate the text's sophisticated presentation of today's materials science. Instructive derivations of important formulae, usually omitted in an introductory text, are included here. This feature offers a useful glimpse into the foundations of how the discipline understands such topics as defects, phase equilibria, and mechanical properties. Additionally, concepts such as reciprocal space, electron energy band theory, and thermodynamics enter the discussion earlier and in a more robust fashion than in other texts.

Electronic Materials Science also features:

- An orientation towards industry and academia drawn from the author's experience in both arenas
- Information on applications in semiconductors, optoelectronics, photocells, and nanoelectronics
- Problem sets and important references throughout
- Flexibility for various pedagogical needs

Treating the subject with more depth than any other introductory text, Electronic Materials Science prepares graduate and upper-level undergraduate students for advanced topics in the discipline and gives scientists in associated disciplines a clear review of the field and its leading technologies.

Preface.

**1 Introduction to Electronic Materials Science.**

1.1 Introduction.

1.2 Structure and Diffraction.

1.3 Defects.

1.4 Diffusion.

1.5 Phase Equilibria.

1.6 Mechanical Properties.

1.7 Electronic Structure.

1.8 Electronic Properties and Devices.

1.9 Electronic Materials Science.

**2 Structure of Solids.**

2.1 Introduction.

2.2 Order.

2.3 The Lattice.

2.4 Crystal Structure.

2.5 Notation.

2.6 Lattice Geometry.

2.7 The Wigner-Seitz Cell.

2.8 Crystal Structures.

Related Reading.

Exercises.

**3 Diffraction.**

3.1 Introduction.

3.2 Phase Difference and Bragg's Law.

3.3 The Scattering Problem.

3.4 Reciprocal Space, RESP.

3.5 Diffraction Techniques.

3.6 Wave Vector Representation.

Related Reading.

Exercises.

**4 Defects in Solids.**

4.1 Introduction.

4.2 Why Do Defects Form?

4.3 Point Defects.

4.4 The Statistics of Point Defects.

4.5 Line Defects--Dislocations.

4.6 Planar Defects.

4.7 Three-Dimensional Defects.

Related Reading.

Exercises.

**5 Diffusion in Solids.**

5.1 Introduction to Diffusion Equations.

5.2 Atomistic Theory of Diffusion: Fick's Laws and a Theory for the Diffusion Construct D.

5.3 Random Walk Problem.

5.4 Other Mass Transport Mechanisms.

5.5 Mathematics of Diffusion.

Related Reading.

Exercises.

**6 Phase Equilibria.**

6.1 Introduction.

6.2 The Gibbs Phase Rule.

6.3 Nucleation and Growth of Phases.

Related Reading.

Exercises.

**7 Mechanical Properties of Solids--Elasticity.**

7.1 Introduction.

7.2 Elasticity Relationships.

7.3 An Analysis of Stress by the Equation of Motion.

7.4 Hooke's Law for Pure Dilatation and Pure Shear.

7.5 Poisson's Ratio.

7.6 Relationships Among E, e, and v.

7.7 Relationships Among E, G, and n.

7.8 Resolving the Normal Forces.

Related Reading.

Exercises.

**8 Mechanical Properties of Solids--Plasticity.**

8.1 Introduction.

8.2 Plasticity Observations.

8.3 Role of Dislocations.

8.4 Deformation of Noncrystalline Materials.

Related Reading.

Exercises.

**9 Electronic Structure of Solids.**

9.1 Introduction.

9.2 Waves, Electrons, and the Wave Function.

9.3 Quantum Mechanics.

9.4 Electron Energy Band Representations.

9.5 Real Energy Band Structures.

9.6 Other Aspects of Electron Energy Band Structure.

Related Reading.

Exercises.

**10 Electronic Properties of Materials.**

10.1 Introduction.

10.2 Occupation of Electronic States.

10.3 Position of the Fermi Energy.

10.4 Electronic Properties of Metals: Conduction and Superconductivity.

10.5 Semiconductors.

10.6 Electrical Behavior of Organic Materials.

Related Reading.

Exercises.

**11 Junctions and Devices and the Nanoscale.**

11.1 Introduction.

11.2 Junctions.

11.3 Selected Devices.

11.4 Nanostructures and Nanodevices.

Index.