EVERYDAY FREE SHIPPING on $25 & up - Excludes marketplace items & rentals.
EVERYDAY FREE SHIPPING on $25 & up - Excludes marketplace items & rentals.
EVERYDAY FREE SHIPPING on $25 & up - Excludes marketplace items & rentals
Search
Introduction to Organic Laboratory Techniques : A Microscale Approach

Introduction to Organic Laboratory Techniques : A Microscale Approach - 4th edition

ISBN13: 978-0495016304

Cover of Introduction to Organic Laboratory Techniques : A Microscale Approach 4TH 07 (ISBN 978-0495016304)
ISBN13: 978-0495016304
ISBN10: 0495016306
Cover type:
Edition/Copyright: 4TH 07
Publisher: Brooks/Cole Publishing Co.
Published: 2007
International: No

List price: $351.95

USED
Sold Out
FREE Shipping on $25+
  • Check back soon!
  • 30-Day Returns
  • Condition: Very Good
Sold Out
rental
$39.49
Save $312.46 (89%)


Ships from $5.99
  • Free Return Shipping
  • Due back 12/18/2015
  • CDs or access codes
    may not be included

Other Editions for Introduction to Organic Laboratory Techniques : A Microscale Approach

More Shipping Options

Introduction to Organic Laboratory Techniques : A Microscale Approach - 4TH 07 edition

ISBN13: 978-0495016304

Donald L. Pavia

ISBN13: 978-0495016304
ISBN10: 0495016306
Cover type:
Edition/Copyright: 4TH 07
Publisher: Brooks/Cole Publishing Co.

Published: 2007
International: No
Summary

In this laboratory textbook for students of organic chemistry, experiments are designed to utilize microscale glassware and equipment. The textbook features a large number of traditional organic reactions and syntheses, as well as the isolation of natural products and experiments with a biological or health sciences focus. The organization of the text is based on essays and topics of current interest. The lab manual contains a comprehensive treatment of laboratory techniques.

Benefits:

  • NEW! A new focus on Green Chemistry has been added to introduce environmentally responsible laboratory methods. New material includes experiments, descriptions of "green" methods, and the essay, Green Chemistry. The new experiments include an extraction using supercritical carbon dioxide, an isolation experiment that utilizes solid phase extraction tubes, an experiment that can be conducted in a conventional microwave oven, and an alternative to the standard chromic acid oxidation. Other experiments have been modified to reduce their use of hazardous solvents.
  • For discovery-based learning needs, open-ended experiments are provided to allow students to "write" their own experimental procedures and make their own discoveries.
  • Infrared, proton NMR, and 13C NMR spectroscopy is incorporated into many experiments. Some experiments also have an option to use gas chromatography-mass spectrometry.
  • Molecular modeling experiments give students an opportunity to experience the power of molecular modeling software.
  • The textbook contains a variety of experiments using microscale glassware and equipment.
  • Essays and examples on contemporary topics spark student interest and engage them in the learning process.
  • Experiments are well-written, comprehensive, class-tested, and proven over time.
  • "Caution" boxes emphasize careful handling of chemicals and the importance of safety in the laboratory.
  • Clear and accurate diagrams of laboratory set-ups increase students' confidence in setting up a lab.
  • End-of-chapter problems test students' mastery of the material.
  • NEW! The Techniques chapters are extensively reorganized. Laboratory Safety is now its own technique chapter and a new technique chapter, How to Find Data for Compounds: Handbooks and Catalogs, is included. New problems have been added to the chapters on infrared and NMR spectroscopy and many 60 MHz NMR spectra have been replaced by more modern 300 MHz spectra.
  • NEW! Substantial revisions were made to the Petroleum and Fossil Fuels essay.
  • NEW! The more than ten new experiments include: Experiment 11 Isolation of Caffeine from Tea (with a new procedure that utilizes solid phase extraction tubes); Experiment 13 Isolation of Eugenol from Cloves (with a new procedure based on a supercritical carbon dioxide extraction); Experiment 35 An Oxidation-Reduction Scheme: Borneol, Camphor, Isoborneol (with a new, solventless procedure); Experiment 44 The Wittig Reaction: Preparation of 1,4-Diphenyl-1,3-butadiene (with a new, solventless procedure); and Experiment 63 Synthesis of Substituted Chalcones: A Guided Inquiry Experience.
  • NEW! The tables of unknowns for the qualitative analysis experiment (Experiment 54 Identification of Unknowns) and Appendix 1 have been greatly expanded.
  • NEW! Chiral gas chromatography has been included in the analysis of the products of the resolution of alpha-phenylethylamine (Experiment 40) and the chiral reduction of ethyl acetoacetate (Experiment 33).
  • NEW! For the qualitative analysis experiment (Experiment 54) a new, optional test can be used in place of the traditional chromic acid test allowing for a safer experiment that does not require contact with hazardous chromium compounds.
  • NEW! Many experiments have been modified to improve their reliability and safety.
  • Green chemistry, an increasingly important topic, is introduced through an easy and experimentation.

Author Bio

Donald L. Pavia
Donald L. Pavia earned his BS degree in chemistry from Reed College and his PhD in organic chemistry from Yale University. In 1970, he joined the faculty at Western Washington University as Assistant Professor and now holds the rank of Professor Emeritus. He is the coauthor of two organic laboratory books that include techniques and experiments: INTRODUCTION TO ORGANIC LABORATORY TECHNIQUES: A MICROSCALE APPROACH, Fifth Edition (Brooks/Cole), and A SMALL SCALE APPROACH TO ORGANIC LABORATORY TECHNIQUES, Fourth Edition (Brooks/Cole), as well as MICROSCALE AND MACROSCALE TECHNIQUES IN THE ORGANIC LABORATORY (Brooks/Cole), which highlights techniques to be used with a faculty member's own experiments. He is a co-author, with Gary M. Lampman, George S. Kriz and James R. Vyvyan of an organic spectroscopy book, INTRODUCTION TO SPECTROSCOPY, Fourth Edition (Brooks/Cole). Professor Pavia's research interests center on the synthesis and reactions of valence tautomeric and photochromic compounds, especially pyrylium-3-oxide tautomers. Autoxidations are a special interest. His other interests include the use of computers in teaching organic chemistry, both for lecture presentation and for the simulation of laboratories. He is the author of several computer programs. One such program is SQUALOR (Simulated Qualitative Organic Analysis) for which he won the 1986 EDUCOM/NCRIPTAL award. The program is designed for teaching the methods for solving organic unknowns.
Gary M. Lampman
Gary M. Lampman earned his BS degree in chemistry from the University of California, Los Angeles, and his PhD in organic chemistry from the University of Washington. In 1964, he joined the faculty at Western Washington University as Assistant Professor, rising to Professor in 1973. He received the Outstanding Teaching Award for the College of Arts and Sciences in 1976. He now holds the title of Professor Emeritus. Teaching has always been an important part of his life. Contact with students invigorates him. He is the coauthor of two organic laboratory books that include techniques and experiments: INTRODUCTION TO ORGANIC LABORATORY TECHNIQUES: A MICROSCALE APPROACH, Fourth Edition (Brooks/Cole), and A SMALL SCALE ARPPROACH TO ORGANIC LABORATORY TECHNIQUES, Third Edition (Brooks/Cole), as well as MICROSCALE AND MACROSCALE TECHNIQUES IN THE ORGANIC LABORATORY (Brooks/Cole), which highlights techniques to be used with a faculty member's own experiments. He is a co-author, with Donald L. Pavia, George S. Kriz, and James R. Vyvyan of an organic spectroscopy book, INTRODUCTION TO SPECTROSCOPY, Fourth Edition (Brooks/Cole). Professor Lampman also is the author of the computer program for teaching organic nomenclature: ORGANIC NOMENCLATURE: AN INTRODUCTION TO THE IUPAC SYSTEM. His research interests center on synthetic methods involving the reaction of free radicals on unsaturated cobaloximes (vitamin B12 model compounds), synthesis of strained small ring compounds, and chemical education. He is the author of 18 papers in these areas. He is a member of the American Chemical Society (Organic and Chemical Education divisions), and the Washington College Chemistry Teachers Association.
George S. Kriz
George S. Kriz is Professor of Chemistry at Western Washington University. He earned his B.S. degree in chemistry from the University of California, and his Ph.D. from Indiana University, Bloomington, IN. In 1967 he joined the faculty at Western Washington University and recently served as department chair. He served as the General Chair of the 17th Biennial Conference on Chemical Education for 2001-2002. Professor Kriz was honored with the Peter J. Elich Excellence in Teaching Award (College of Arts and Sciences), Western Washington University, in 2000 and the Distinguised Service Award from the Division of Chemical Education, American Chemical Society (2010). He is the co-author with Donald Pavia, Gary Lampman, and Randall Engel of two organic laboratory books that include both techniques and experiments: INTRODUCTION TO ORGANIC LABORATORY TECHNIQUES: A MICROSCALE APPROACH, Fifth Edition (Brooks/Cole), and A SMALL SCALE APPROACH TO ORGANIC LABORATORY TECHNIQUES, Third Edition (Brooks/Cole). Their book, MICROSCALE AND MACROSCALE TECHNIQUES IN THE ORGANIC LABORATORY (Brooks/Cole), includes techniques only, and can be used with a faculty member's own experiments. He is a co-author, with Donald Pavia, Gary Lampman, and James Vyvyan, of an organic spectroscopy book, INTRODUCTION TO SPECTROSCOPY, Fourth Edition (Brooks/Cole). Professor Kriz's research interests include: developing new experiments for the organic chemistry laboratory; chemical education and the teaching of chemistry courses for general-understanding audiences; and determination of the structures of natural products using spectroscopic methods.
Randall G. Engel
Randall G. Engel has taught chemistry for almost 35 years. He has co-authored with Donald Pavia, Gary Lampman, and George Kriz INTRODUCTION TO ORGANIC LABORATORY TECHNIQUES: A MICROSCALE APPROACH, Fourth Edition (Brooks/Cole), and A SMALL SCALE INTRODUCTION TO ORGANIC LABORATORY TECHNIQUES, Third Edition (Brooks/Cole). Their book, MICROSCALE AND MACROSCALE TECHNIQUES IN THE ORGANIC LABORATORY (Brooks/Cole), includes techniques only, and can be used with a faculty member's own experiments. Engel received his B.A. degree in chemistry from Cornell College and his M.S. degree in chemistry from Western Washington University. He began his teaching career at Wenatchee Valley College in 1975 and continued at Green River Community College and Edmonds Community College. Presently he teaches organic chemistry on a part-time basis at North Seattle Community College.

Table of Contents

Part One: INTRODUCTION TO BASIC LABORATORY TECHNIQUES.
Experiment 1: Introduction to Microscale Laboratory.
Experiment 2: Solubility.
Experiment 3: Crystallization.
Experiment 4: Extraction.
Experiment 5: Chromatography.
Experiment 6: Simple and Fractional Distillation.
Experiment 6A: Simple and Fractional Distillation (Semi-Microscale Procedure).
Experiment 6B: Simple and Fractional Distillation (Microscale Procedure).
Experiment 7: Infrared Spectroscopy and Boiling-Point Elevation.
Essay Aspirin.
Experiment 8: Acetylsalicylic Acid.
Essay Analgesics.
Experiment 9: Isolation of the Active Ingredient in an Analgesic Drug.
Experiment 10: Acetaminophen.
Experiment 10A: Acetaminophen (Microscale Procedure).
Experiment 10B: Acetaminophen (Semi-Microscale Procedure).
Essay Identification of Drugs.
Experiment 11: TLC Analysis of Analgesic Drugs.
Essay Caffeine.
Experiment 12: Isolation of Caffeine from Tea or Coffee.
Experiment 12A: Extraction of Caffeine from Tea with Methylene Chloride.
Experiment 12B: Extraction of Caffeine from Tea or Coffee Using Solid Phase Extraction (SPE).
Essay Esters¡XFlavors and Fragrances.
Experiment 13: Isopentyl Acetate (Banana Oil).
Experiment 13A: Isopentyl Acetate (Microscale Procedure).
Experiment 12B: Isopentyl Acetate (Semi-Microscale Procedure).
Essay Terpenes and Phenylpropanoids.
Experiment 14: Essential Oils: Extractions of Oil from Cloves by Steam Distillation and Liquid Carbon Dioxide.
Experiment 14A: Oil of Cloves (Microscale Procedure).
Experiment 14B: Oil of Cloves (Semi-Microscale Procedure).
Experiment 14C: Extraction of Oil of Cloves with Liquid Carbon Dioxide.
Essay Stereochemical Theory of Odor.
Experiment 15: Spearmint and Caraway Oil: ()- and ()-Carvones.
Essay The Chemistry of Vision.
Experiment 16: Isolation of Chlorophyll and Carotenoid Pigments from Spinach.
Essay Ethanol and Fermentation Chemistry.
Experiment 17: Ethanol from Sucrose.
Part Two: INTRODUCTION TO MOLECULAR MODELING.
Essay Molecular Modeling and Molecular Mechanics.
Experiment 18: An Introduction to Molecular Modeling.
Experiment 18A: The Conformations of n-Butane: Local Minima.
Experiment 18B: Cyclohexane Chair and Boat Conformations.
Experiment 18C: Substituted Cyclohexane Rings.
Experiment 18D: cis- and trans-2-Butene.
Essay Computational Chemistry¡Vab Initio and Semiempirical Methods.
Experiment 19: Computational Chemistry.
Experiment 19A: Heats of Formation: Isomerism, Tautomerism, and Regioselectivity.
Experiment 19B: Heats of Reaction: SN1 Reaction Rates.
Experiment 19C: Density¡VElectrostatic Potential Maps¡XAcidities of Carboxylic Acids.
Experiment 19D: Density¡VElectrostatic Potential Maps: Carbocations.
Experiment 19E: Density¡VLUMO Maps: Reactivities of Carbonyl Groups.
Part Three: PREPARATIONS AND REACTIONS OF ORGANIC COMPOUNDS.
Experiment 20: Reactivities of Some Alkyl Halides.
Experiment 21: Nucleophilic Substitution Reactions: Competing Nucleophiles.
Experiment 21A: Competitive Nucleophiles with 1-Butanol or 2-Butanol.
Experiment 21B: Competitive Nucleophiles with 2-Methyl-2-propanol.
Experiment 21C: Analysis.
Experiment 22: Hydrolysis of Some Alkyl Chlorides.
Experiment 23: Synthesis of n-Butyl Bromide and t-Pentyl Chloride.
Experiment 23A: n-Butyl Bromide.
Experiment 23B: n-Butyl Bromide (Semi-Microscale Procedure).
Experiment 23C: t-Pentyl Chloride (Microscale Procedure).
Experiment 23D: t-Pentyl Chloride (Semi-Microscale Procedure).
Experiment 23E: t-Pentyl Chloride (Macroscale Procedure).
Experiment 24: Elimination Reactions: Dehydration and Dehydrohalogenation.
Experiment 24A: Dehydration of 1-Butanol and 2-Butanol.
Experiment 24B: Dehydrobromination of 1-Bromobutane and 2-Bromobutane.
Experiment 25: 4-Methylcyclohexene.
Experiment 25A: 4-Methylcyclohexene (Microscale Procedure).
Experiment 25B: 4-Methylcyclohexene (Semi-Microscale Procedure).
Experiment 26: Phase-Transfer Catalysis: Addition of Dichlorocarbene to Cyclohexene.
Experiment 27: Relative Reactivities of Several Aromatic Compounds.
Experiment 28: Nitration of Methyl Benzoate.
Essay Fats and Oils.
Experiment 29: Methyl Stearate from Methyl Oleate.
Essay Soaps and Detergents.
Experiment 30: Preparation of a Soap.
Experiment 31: Preparation of a Detergent.
Essay Petroleum and Fossil Fuels.
Experiment 32: Gas-Chromatographic Analysis of Gasolines.
Essay Green Chemistry.
Experiment 33: Chiral Reduction of Ethyl Acetoacetate; Optical Purity Determination.
Experiment 33A: Chiral Reduction of Ethyl Acetoacetate.
Experiment 33B: NMR Determination of the Optical Purity of Ethyl (S)-3-Hydroxybutanoate.
Experiment 34: Nitration of Aromatic Compounds Using a Recyclable Catalyst.
Experiment 35: An Oxidation-Reduction Scheme: Borneol, Camphor, Isoborneol.
Experiment 36: Multistep Reaction Sequences: The Conversion of Benzaldehyde to Benzilic Acid.
Experiment 36A: Preparation of Benzoin by Thiamine Catalysis.
Experiment 36B: Preparation of Benzil.
Experiment 36C: Preparation of Benzilic Acid.
Experiment 37: Tetraphenylcyclopentadienone.
Experiment 38: Triphenylmethanol and Benzoic Acid.
Experiment 38A: Triphenylmethanol.
Experiment 38B: Benzoic Acid.
Experiment 39: Aqueous-Based Organozinc Reactions.
Experiment 40: Resolution of (±)- a-Phenylethylamine and Determination of Optical Purity.
Experiment 40A: Resolution of (±)-a-Phenylethylamine.
Experiment 40B: Determination of Optical Purity Using NMR and a Chiral Resolving Agent.
Experiment 41: The Aldol Condensation Reaction: Preparation of Benzalacetophenones (Chalcones).
Experiment 42: Preparation of an a,ß-Unsaturated Ketone via Michael and Aldol Condensation Reactions.
Experiment 43: Enamine Reactions: 2-Acetylcyclohexanone.
Experiment 44: 1,4-Diphenyl-1,3-butadiene.
Experiment 44A: Benzyltriphenylphosphonium Chloride.
Experiment 44B: Preparation of 1,4-diphenyl-1,3-butadiene Using Sodium Ethoxide To generate the Yilde.
Experiment 44C: Preparation of 1,4-diphenyl-1,3-butadiene Using Potassium Phosphate To Generate the Yilde.
Essay Local Anesthetics.
Experiment 45: Benzocaine.
Experiment 46: Methyl Salicylate (Oil of Wintergreen).
Essay Pheromones: Insect Attractants and Repellants.
Experiment 47: N,N-Diethyl-m-toluamide: The Insect Repellent "OFF."
Essay Sulfa Drugs.
Experiment 48: Sulfa Drugs: Preparation of Sulfanilamide.
Essay Polymers and Plastics.
Experiment 49: Preparation of Properties of Polymers: Polyester, Nylon, and Polystyrene.
Experiment 49A: Polyesters.
Experiment 49B: Polyamide (Nylon).
Experiment 49C: Polystyrene.
Experiment 49D: Infrared Spectra of Polymer Samples.
Essay Diels¡VAlder Reaction and Insecticides.
Experiment 50: The Diels¡VAlder Reaction of Cyclopentadiene with Maleic Anhydride.
Experiment 51: Photoreduction of Benzophenone and Rearrangement of Benzpinacol to Benzopinacolone.
Experiment 51A: Photoreduction of Benzophenone.
Experiment 51B: Synthesis of ?Ò-Benzopinacolone: The Acid-Catalyzed Rearrangement of Benzpinacol.
Essay Fireflies and Photochemistry.
Experiment 52: Luminol.
Essay The Chemistry of Sweeteners.
Experiment 53: Analysis of A Diet Soft Drink by HPLC.
Part Four: IDENTIFICATION OF ORGANIC SUBSTANCES.
Experiment 54: Identification of Unknowns.
Experiment 54A: Solubility Tests.
Experiment 54B: Tests of the Elements (N, S, X).
Experiment 54C: Tests for Unsaturation.
Experiment 54D: Aldehydes and Ketones.
Experiment 54E: Carboxylic Acids.
Experiment 54F: Phenols.
Experiment 54G: Amines.
Experiment 54H: Alcohols.
Experiment 54I: Esters.
Part Five: PROJECT-BASED EXPERIMENTS.
Experiment 55: A Separation and Purification Scheme.
Experiment 56: Preparation of a C-4 or C-5 Acetate Ester.
Experiment 57: Extraction of Essential Oils from Caraway, Cinnamon, Cloves, Cumin, or Fennel by Steam Distillation and Liquid Carbon Dioxide.
Experiment 57A: Isolation of Essential Oils by Steam Distillation.
Experiment 57B: Identification of the Constituents of Essential Oils by Gas Chromatography¡VMass Spectrometry.
Experiment 57C: Investigation of the Essential Oils of Herbs and Spices¡XA Mini-Research Project.
Experiment 57D: Extraction of an Essential Oil with Liquid Carbon Dioxide [New for 4e].
Experiment 58: Competing Nucleophiles in SN1 and SN2 Reactions: Investigations Using 2-Pentanol and 3-Pentanol.
Experiment 59: Friedel¡VCrafts Acylation.
Experiment 60: The Analysis of Antihistamine Drugs by Gas Chromatography¡VMass Spectrometry.
Experiment 61: The Use of Organozinc Reagents in Synthesis: An Exercise in Synthesis and Structure Proof by Spectroscopy.
Experiment 62: The Aldehyde Enigma.
Experiment 63: Synthesis of Substituted Chalcones: A Guided-Inquiry Experience.
Experiment 64: Michael and Aldol Condensation Reactions.
Experiment 65: Esterification Reactions of Vanillin: The Use of NMR to Solve a Structure Proof Problem.
Experiment 66: An Oxidation Puzzle.
Part Six: THE TECHNIQUES.
Technique 1: Laboratory Safety.
Technique 2: The Laboratory Notebook, Calculations, and Laboratory Records.
Technique 3: Laboratory Glassware: Care and Cleaning.
Technique 4: How to Find Data for Compounds: Handbooks and Catalogs.
Technique 5: Measurement of Volume and Weight.
Technique 6: Heating and Cooling Methods.
Technique 7: Reaction Methods.
Technique 8: Filtration.
Technique 9: Physical Constants of Solids: The Melting Point.
Technique 10: Solubility.
Technique 11: Crystallization: Purification of Solids.
Technique 12: Extractions, Separations, and Drying Agents.
Technique 13: Physical Constants of Liquids: The Boiling Point and Density.
Technique 14: Simple Distillation.
Technique 15: Fractional Distillation, Azeotropes.
Technique 16: Vacuum Distillation, Manometers.
Technique 17: Sublimation.
Technique 18: Steam Distillation.
Technique 19: Column Chromatography.
Technique 20: Thin-Layer Chromatography.
Technique 21: High-Performance Liquid Chromatography (HPLC).
Technique 22: Gas Chromatography.
Technique 23: Polarimetry.
Technique 24: Refractometry.
Technique 25: Infrared Spectroscopy.
Technique 26: Nuclear Magnetic Resonance Spectroscopy (Proton NMR).
Technique 27: Carbon-13 Nuclear Magnetic Resonance Spectroscopy.
Technique 28: 6 Mass Spectrometry.
Technique 29: Guide to the Chemical Literature.
Appendices:
Appendix 1. Tables of Unknowns and Derivatives.
Appendix 2. Procedures for Preparing Derivatives.
Appendix 3. Index of Spectra.

List price: $351.95
  • Rental
  • $39.49
  • Marketplace
  • From

Other Editions for Introduction to Organic Laboratory Techniques : A Microscale Approach

Cover of Microscale Approach to Organic Laboratory Techniques 5th edition

Microscale Approach to Organic Laboratory Techniques - 5th edition

ISBN13: 978-1133106524
More Shipping Options