List price: $209.95
Price | Condition | Seller | Comments |
---|
Key Features:
1. Vectors and Matrices.
1.1Vectors in Rn..
1.2Dot Product.
1.3Subspaces of Rn.
1.4Linear Transformations and Matrix Algebra.
1.5Introduction to Determinates and the Cross Product.
2.Functions, Limits, and Continuity.
2.1. Scalar- and Vector-Valued Functions.
2.2. A Bit of Topology in Rn.
2.3. Limits and Continuity.
3.The Derivative.
3.1. Partial Derivatives and Directional Derivatives.
3.2. Differentiability.
3.3. Differentiation Rules.
3.4. The Gradient.
3.5. Curves.
3.6. Higher-Order Partial Derivatives.
4.Implicit and Explicit Solutions of Linear Systems.
4.1. Gaussian Elimination and the Theory of Linear Systems.
4.2. Elementary Matrices and Calculating Inverse Matrices.
4.3. Linear Independence, Basis, and Dimension.
4.4. The Four Fundamental Subspaces.
4.5. The Nonlinear Case: Introduction to Manifolds.
5.Extremum Problems.
5.1. Compactness and the Maximum Value Theorem.
5.2. Maximum/Minimum Problems.
5.3. Quadratic Forms and the Second Derivative Test.
5.4. Lagrange Multipliers.
5.5. Projections, Least Squares, and Inner Product Spaces.
6.Solving Nonlinear Problems.
6.1. The Contraction Mapping Principle.
6.2. The Inverse and Implicit Function Theorems.
6.3. Manifolds Revisited.
7.Integration.
7.1. Multiple Integrals.
7.2. Iterated Integrals and Fubini's Theorem.
7.3. Polar, Cylindrical, and Spherical Coordinates.
7.4. Physical Applications.
7.5. Determinants and n-Dimensional Volume.
7.6. Change of Variables Theorem.
8.Differential Forms and Integration on Manifolds.
8.1. Motivation.
8.2. Differential Forms.
8.3. Line Integrals and Green's Theorem.
8.4. Surface Integrals and Flux.
8.5. Stokes's Theorem.
8.6. Applications to Physics.
8.7. Applications to Topology.
9.Eigenvalues, Eigenvectors, and Applications.
9.1. Linear Transformations and Change of Basis.
9.2. Eigenvalues, Eigenvectors, and Diagonalizability.
9.3. Difference Equations and Ordinary Differential Equations.
9.4. The Spectral Theorem.
Glossary of Notations and Results from Single-Variable Calculus.
For Further Reading.
Answers to Selected Exercises.
Index.
Key Features:
Table of Contents
1. Vectors and Matrices.
1.1Vectors in Rn..
1.2Dot Product.
1.3Subspaces of Rn.
1.4Linear Transformations and Matrix Algebra.
1.5Introduction to Determinates and the Cross Product.
2.Functions, Limits, and Continuity.
2.1. Scalar- and Vector-Valued Functions.
2.2. A Bit of Topology in Rn.
2.3. Limits and Continuity.
3.The Derivative.
3.1. Partial Derivatives and Directional Derivatives.
3.2. Differentiability.
3.3. Differentiation Rules.
3.4. The Gradient.
3.5. Curves.
3.6. Higher-Order Partial Derivatives.
4.Implicit and Explicit Solutions of Linear Systems.
4.1. Gaussian Elimination and the Theory of Linear Systems.
4.2. Elementary Matrices and Calculating Inverse Matrices.
4.3. Linear Independence, Basis, and Dimension.
4.4. The Four Fundamental Subspaces.
4.5. The Nonlinear Case: Introduction to Manifolds.
5.Extremum Problems.
5.1. Compactness and the Maximum Value Theorem.
5.2. Maximum/Minimum Problems.
5.3. Quadratic Forms and the Second Derivative Test.
5.4. Lagrange Multipliers.
5.5. Projections, Least Squares, and Inner Product Spaces.
6.Solving Nonlinear Problems.
6.1. The Contraction Mapping Principle.
6.2. The Inverse and Implicit Function Theorems.
6.3. Manifolds Revisited.
7.Integration.
7.1. Multiple Integrals.
7.2. Iterated Integrals and Fubini's Theorem.
7.3. Polar, Cylindrical, and Spherical Coordinates.
7.4. Physical Applications.
7.5. Determinants and n-Dimensional Volume.
7.6. Change of Variables Theorem.
8.Differential Forms and Integration on Manifolds.
8.1. Motivation.
8.2. Differential Forms.
8.3. Line Integrals and Green's Theorem.
8.4. Surface Integrals and Flux.
8.5. Stokes's Theorem.
8.6. Applications to Physics.
8.7. Applications to Topology.
9.Eigenvalues, Eigenvectors, and Applications.
9.1. Linear Transformations and Change of Basis.
9.2. Eigenvalues, Eigenvectors, and Diagonalizability.
9.3. Difference Equations and Ordinary Differential Equations.
9.4. The Spectral Theorem.
Glossary of Notations and Results from Single-Variable Calculus.
For Further Reading.
Answers to Selected Exercises.
Index.