List price: $100.00
Happy you, happy us. You get 24-hour turnaround. Free shipping on $25+, and dedicated customer service. Cue the smiley faces.
List price: $100.00
Instant access, flexible term options, and deep discounts up to 60% on digital content! Happy you, happy us.
The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models.
Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructorseTextbooks and eChapters can be viewed by using the free reader listed below.
Be sure to check the format of the eTextbook/eChapter you purchase to know which reader you will need. After purchasing your eTextbook or eChapter, you will be emailed instructions on where and how to download your free reader.
Download Requirements:Due to the size of eTextbooks, a high-speed Internet connection (cable modem, DSL, LAN) is required for download stability and speed. Your connection can be wired or wireless.
Being online is not required for reading an eTextbook after successfully downloading it. You must only be connected to the Internet during the download process.
User Help:
Click Here to access the VitalSource Bookshelf FAQ
Digital Rights Management (DRM) Key
Copying - Books that cannot be copied will show "Not Allowed." Otherwise, this will detail the number of times it can be copied, or "Allowed with no limits."
Printing - Books that cannot be printed will show "Not Allowed." Otherwise, this will detail the number of times it can be printed, or "Allowed with no limits."
Expires - Books that have no expiration (the date upon which you will no longer be able to access your eBook) will read "No Expiration." Otherwise it will state the number of days from activation (the first time you actually read it).
Reading Aloud - Books enabled with the "text-to-speech" feature so that they can be read aloud will show "Allowed."
Sharing - Books that cannot be shared with other computers will show "Not Allowed."
Min. Software Version - This is the minimum software version needed to read this book.
Suitable Devices - Hardware known to be compatible with this book. Note: Reader software still needs to be installed.
The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models.
Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructorseTextbooks and eChapters can be viewed by using the free reader listed below.
Be sure to check the format of the eTextbook/eChapter you purchase to know which reader you will need. After purchasing your eTextbook or eChapter, you will be emailed instructions on where and how to download your free reader.
Download Requirements:Due to the size of eTextbooks, a high-speed Internet connection (cable modem, DSL, LAN) is required for download stability and speed. Your connection can be wired or wireless.
Being online is not required for reading an eTextbook after successfully downloading it. You must only be connected to the Internet during the download process.
User Help:
Click Here to access the VitalSource Bookshelf FAQ
Digital Rights Management (DRM) Key
Copying - Books that cannot be copied will show "Not Allowed." Otherwise, this will detail the number of times it can be copied, or "Allowed with no limits."
Printing - Books that cannot be printed will show "Not Allowed." Otherwise, this will detail the number of times it can be printed, or "Allowed with no limits."
Expires - Books that have no expiration (the date upon which you will no longer be able to access your eBook) will read "No Expiration." Otherwise it will state the number of days from activation (the first time you actually read it).
Reading Aloud - Books enabled with the "text-to-speech" feature so that they can be read aloud will show "Allowed."
Sharing - Books that cannot be shared with other computers will show "Not Allowed."
Min. Software Version - This is the minimum software version needed to read this book.
Suitable Devices - Hardware known to be compatible with this book. Note: Reader software still needs to be installed.
The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models.
Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructorseTextbooks and eChapters can be viewed by using the free reader listed below.
Be sure to check the format of the eTextbook/eChapter you purchase to know which reader you will need. After purchasing your eTextbook or eChapter, you will be emailed instructions on where and how to download your free reader.
Download Requirements:Due to the size of eTextbooks, a high-speed Internet connection (cable modem, DSL, LAN) is required for download stability and speed. Your connection can be wired or wireless.
Being online is not required for reading an eTextbook after successfully downloading it. You must only be connected to the Internet during the download process.
User Help:
Click Here to access the VitalSource Bookshelf FAQ
Digital Rights Management (DRM) Key
Copying - Books that cannot be copied will show "Not Allowed." Otherwise, this will detail the number of times it can be copied, or "Allowed with no limits."
Printing - Books that cannot be printed will show "Not Allowed." Otherwise, this will detail the number of times it can be printed, or "Allowed with no limits."
Expires - Books that have no expiration (the date upon which you will no longer be able to access your eBook) will read "No Expiration." Otherwise it will state the number of days from activation (the first time you actually read it).
Reading Aloud - Books enabled with the "text-to-speech" feature so that they can be read aloud will show "Allowed."
Sharing - Books that cannot be shared with other computers will show "Not Allowed."
Min. Software Version - This is the minimum software version needed to read this book.
Suitable Devices - Hardware known to be compatible with this book. Note: Reader software still needs to be installed.