Ship-Ship-Hooray! Free Shipping on $25+ Details >

by Henry Edwards and David Penney

Cover type: HardbackEdition: 4TH 08

Copyright: 2008

Publisher: Prentice Hall, Inc.

Published: 2008

International: No

List price: $196.25

All of our used books are 100% hand-inspected and guaranteed! Happy you, happy us.

FREE Shipping on $25+

Order $25 or more and the shipping's on us. Marketplace items and other exclusions apply.

Ships Today!

Order by noon CST (Mon-Fri, excluding holidays). Some restrictions apply.

Easy 30-Day Returns

Not the right book for you? We accept returns within 30 days of purchase. Access codes are non-refundable once revealed or redeemed.

Ships directly from us

You Save $193.46 (99%)

$2.79

Condition: Very Good
**100% Satisfaction Guarantee**

We hand-inspect every one of our used books.

We hand-inspect every one of our used books.

Well, that's no good. Unfortunately, this edition is currently out of stock. Please check back soon.

Also available in the Marketplace starting at $1.99

Price | Condition | Seller | Comments |
---|

This text provides the conceptual development and geometric visualization of a modern differential equations course that is still essential to science and engineering students. It reflects the new emphases that permeate the learning of elementary differential equations, including the wide availability of scientific computing environments like Maple, Mathematica, and MATLAB; its focus has shifted from the traditional manual methods to new computer-based methods that illuminate qualitative phenomena and make accessible a wider range of more realistic applications. Seldom-used topics have been trimmed and new topics added: it starts and ends with discussions of mathematical modeling of real-world phenomena, evident in figures, examples, problems, and applications throughout the text.

**1. First Order Differential Equations. **

Differential Equations and Mathematical Models. Integrals as General and Particular Solutions. Slope Fields and Solution Curves. Separable Equations and Applications. Linear First Order Equations. Substitution Methods and Exact Equations.

**2. Mathematical Models and Numerical Methods. **

Population Models. Equilibrium Solutions and Stability. Acceleration-Velocity Models. Numerical Approximation: Euler's Method. A Closer Look at the Euler Method, and Improvements. The Runge-Kutta Method.

**3. Linear Equations of Higher Order. **

Introduction: Second-Order Linear Equations. General Solutions of Linear Equations. Homogeneous Equations with Constant Coefficients. Mechanical Vibrations. Nonhomogeneous Equations and Undetermined Coefficients. Forced Oscillations and Resonance. Electrical Circuits. Endpoint Problems and Eigenvalues.

**4. Introduction to Systems of Differential Equations. **

First-Order Systems and Applications. The Method of Elimination. Numerical Methods for Systems.

**5. Linear Systems of Differential Equations. **

Linear Systems and Matrices. The Eigenvalue Method for Homogeneous Systems. Second Order Systems and Mechanical Applications. Multiple Eigenvalue Solutions. Matrix Exponentials and Linear Systems. Nonhomogeneous Linear Systems.

**6. Nonlinear Systems and Phenomena. **

Stability and the Phase Plane. Linear and Almost Linear Systems. Ecological Models: Predators and Competitors. Nonlinear Mechanical Systems. Chaos in Dynamical Systems.

**7. Laplace Transform Methods. **

Laplace Transforms and Inverse Transforms. Transformation of Initial Value Problems. Translation and Partial Fractions. Derivatives, Integrals, and Products of Transforms. Periodic and Piecewise Continuous Forcing Functions. Impulses and Delta Functions

shop us with confidence

Summary

This text provides the conceptual development and geometric visualization of a modern differential equations course that is still essential to science and engineering students. It reflects the new emphases that permeate the learning of elementary differential equations, including the wide availability of scientific computing environments like Maple, Mathematica, and MATLAB; its focus has shifted from the traditional manual methods to new computer-based methods that illuminate qualitative phenomena and make accessible a wider range of more realistic applications. Seldom-used topics have been trimmed and new topics added: it starts and ends with discussions of mathematical modeling of real-world phenomena, evident in figures, examples, problems, and applications throughout the text.

Table of Contents

**1. First Order Differential Equations. **

Differential Equations and Mathematical Models. Integrals as General and Particular Solutions. Slope Fields and Solution Curves. Separable Equations and Applications. Linear First Order Equations. Substitution Methods and Exact Equations.

**2. Mathematical Models and Numerical Methods. **

Population Models. Equilibrium Solutions and Stability. Acceleration-Velocity Models. Numerical Approximation: Euler's Method. A Closer Look at the Euler Method, and Improvements. The Runge-Kutta Method.

**3. Linear Equations of Higher Order. **

Introduction: Second-Order Linear Equations. General Solutions of Linear Equations. Homogeneous Equations with Constant Coefficients. Mechanical Vibrations. Nonhomogeneous Equations and Undetermined Coefficients. Forced Oscillations and Resonance. Electrical Circuits. Endpoint Problems and Eigenvalues.

**4. Introduction to Systems of Differential Equations. **

First-Order Systems and Applications. The Method of Elimination. Numerical Methods for Systems.

**5. Linear Systems of Differential Equations. **

Linear Systems and Matrices. The Eigenvalue Method for Homogeneous Systems. Second Order Systems and Mechanical Applications. Multiple Eigenvalue Solutions. Matrix Exponentials and Linear Systems. Nonhomogeneous Linear Systems.

**6. Nonlinear Systems and Phenomena. **

Stability and the Phase Plane. Linear and Almost Linear Systems. Ecological Models: Predators and Competitors. Nonlinear Mechanical Systems. Chaos in Dynamical Systems.

**7. Laplace Transform Methods. **

Laplace Transforms and Inverse Transforms. Transformation of Initial Value Problems. Translation and Partial Fractions. Derivatives, Integrals, and Products of Transforms. Periodic and Piecewise Continuous Forcing Functions. Impulses and Delta Functions

Publisher Info

Publisher: Prentice Hall, Inc.

Published: 2008

International: No

Published: 2008

International: No

**1. First Order Differential Equations. **

Differential Equations and Mathematical Models. Integrals as General and Particular Solutions. Slope Fields and Solution Curves. Separable Equations and Applications. Linear First Order Equations. Substitution Methods and Exact Equations.

**2. Mathematical Models and Numerical Methods. **

Population Models. Equilibrium Solutions and Stability. Acceleration-Velocity Models. Numerical Approximation: Euler's Method. A Closer Look at the Euler Method, and Improvements. The Runge-Kutta Method.

**3. Linear Equations of Higher Order. **

Introduction: Second-Order Linear Equations. General Solutions of Linear Equations. Homogeneous Equations with Constant Coefficients. Mechanical Vibrations. Nonhomogeneous Equations and Undetermined Coefficients. Forced Oscillations and Resonance. Electrical Circuits. Endpoint Problems and Eigenvalues.

**4. Introduction to Systems of Differential Equations. **

First-Order Systems and Applications. The Method of Elimination. Numerical Methods for Systems.

**5. Linear Systems of Differential Equations. **

Linear Systems and Matrices. The Eigenvalue Method for Homogeneous Systems. Second Order Systems and Mechanical Applications. Multiple Eigenvalue Solutions. Matrix Exponentials and Linear Systems. Nonhomogeneous Linear Systems.

**6. Nonlinear Systems and Phenomena. **

Stability and the Phase Plane. Linear and Almost Linear Systems. Ecological Models: Predators and Competitors. Nonlinear Mechanical Systems. Chaos in Dynamical Systems.

**7. Laplace Transform Methods. **

Laplace Transforms and Inverse Transforms. Transformation of Initial Value Problems. Translation and Partial Fractions. Derivatives, Integrals, and Products of Transforms. Periodic and Piecewise Continuous Forcing Functions. Impulses and Delta Functions