Ship-Ship-Hooray! Free Shipping on $25+ Details >

Cover type: Paperback

Edition: 98

Copyright: 1998

Publisher: Springer-Verlag New York

Published: 1998

International: No

Edition: 98

Copyright: 1998

Publisher: Springer-Verlag New York

Published: 1998

International: No

List price: $49.95

All of our used books are 100% hand-inspected and guaranteed! Happy you, happy us.

FREE Shipping on $25+

Order $25 or more and the shipping's on us. Marketplace items and other exclusions apply.

Ships Today!

Order by noon CST (Mon-Fri, excluding holidays). Some restrictions apply.

Easy 30-Day Returns

Not the right book for you? We accept returns within 30 days of purchase. Access codes are non-refundable once revealed or redeemed.

Ships directly from us

SELL THIS BOOK NOW

Get $8.50 CASH!

Get $8.50 CASH!

You Save $22.78 (46%)

$27.17

Condition: Very Good
**100% Satisfaction Guarantee**

We hand-inspect every one of our used books.

We hand-inspect every one of our used books.

Well, that's no good. Unfortunately, this edition is currently out of stock. Please check back soon.

Also available in the Marketplace starting at $13.51

Price | Condition | Seller | Comments |
---|

This book gives an undergraduate-level introduction to Number Theory with the emphasis on fully explained proofs and examples; exercises (with solutions) are integrated into the text. The first few chapters covering divisibility prime numbers and modular arithmetic assume only basic school algebra and are therefore suitable for first or second year students as an introduction to the methods of pure mathematics. Elementary ideas about groups and rings (summarised in an appendix) are then used to study groups of units quadratic residues and arithmetic functions with applications to enumeration and cryptography. The final part suitable for third-year students uses ideas from algebra analysis calculus and geometry to study Dirichlet series and sums of squares; in particular the last chapter gives a concise account of Fermat's Last Theorem from its origin in the ancient Babylonian and Greek study of Pythagorean triples to its recent proof by Andrew Wiles.

Preface

Notes to the reader

Divisibility

Prime Numbers

Congruences

Congruences with prime modulus

Euler's function

The group of units

Quadratic residues

Arithmetic functions

The Riemann zeta function

Sums of squares

Fermat's Last Theorem

Appendix 1: Induction and well-ordering

Appendix 2: Groups rings and fields

Appendix 3: Convergence

Table of primes

Solutions to excercises

References

Index of symbols

Index of names

Index.

shop us with confidence

Summary

This book gives an undergraduate-level introduction to Number Theory with the emphasis on fully explained proofs and examples; exercises (with solutions) are integrated into the text. The first few chapters covering divisibility prime numbers and modular arithmetic assume only basic school algebra and are therefore suitable for first or second year students as an introduction to the methods of pure mathematics. Elementary ideas about groups and rings (summarised in an appendix) are then used to study groups of units quadratic residues and arithmetic functions with applications to enumeration and cryptography. The final part suitable for third-year students uses ideas from algebra analysis calculus and geometry to study Dirichlet series and sums of squares; in particular the last chapter gives a concise account of Fermat's Last Theorem from its origin in the ancient Babylonian and Greek study of Pythagorean triples to its recent proof by Andrew Wiles.

Table of Contents

Preface

Notes to the reader

Divisibility

Prime Numbers

Congruences

Congruences with prime modulus

Euler's function

The group of units

Quadratic residues

Arithmetic functions

The Riemann zeta function

Sums of squares

Fermat's Last Theorem

Appendix 1: Induction and well-ordering

Appendix 2: Groups rings and fields

Appendix 3: Convergence

Table of primes

Solutions to excercises

References

Index of symbols

Index of names

Index.

Publisher Info

Publisher: Springer-Verlag New York

Published: 1998

International: No

Published: 1998

International: No

Notes to the reader

Divisibility

Prime Numbers

Congruences

Congruences with prime modulus

Euler's function

The group of units

Quadratic residues

Arithmetic functions

The Riemann zeta function

Sums of squares

Fermat's Last Theorem

Appendix 1: Induction and well-ordering

Appendix 2: Groups rings and fields

Appendix 3: Convergence

Table of primes

Solutions to excercises

References

Index of symbols

Index of names

Index.