Ship-Ship-Hooray! Free Shipping on $25+ Details >

Cover type: Hardback

Edition: 02

Copyright: 2002

Publisher: Kluwer Academic Publishers

Published: 2002

International: No

Edition: 02

Copyright: 2002

Publisher: Kluwer Academic Publishers

Published: 2002

International: No

List price: $169.00

All of our used books are 100% hand-inspected and guaranteed! Happy you, happy us.

FREE Shipping on $25+

Order $25 or more and the shipping's on us. Marketplace items and other exclusions apply.

Ships Monday

Order by noon CST (Mon-Fri, excluding holidays). Some restrictions apply.

Easy 30-Day Returns

Not the right book for you? We accept returns within 30 days of purchase. Access codes are non-refundable once revealed or redeemed.

Ships directly from us

You Save $113.01 (67%)

$55.99

Condition: Very Good
**100% Satisfaction Guarantee**

We hand-inspect every one of our used books.

We hand-inspect every one of our used books.

Well, that's no good. Unfortunately, this edition is currently out of stock. Please check back soon.

Also available in the Marketplace starting at $54.34

Price | Condition | Seller | Comments |
---|

This introduction to mathematical logic starts with propositional calculus and first-order logic. Topics covered include syntax, semantics, soundness, completeness, independence, normal forms, vertical paths through negation normal formulas, compactness, Smullyan's Unifying Principle, natural deduction, cut-elimination, semantic tableaux, Skolemization, Herbrand's Theorem, unification, duality, interpolation, and definability.

The last three chapters of the book provide an introduction to type theory (higher-order logic). It is shown how various mathematical concepts can be formalized in this very expressive formal language. This expressive notation facilitates proofs of the classical incompleteness and undecidability theorems which are very elegant and easy to understand. The discussion of semantics makes clear the important distinction between standard and nonstandard models which is so important in understanding puzzling phenomena such as the incompleteness theorems and Skolem's Paradox about countable models of set theory.

Some of the numerous exercises require giving formal proofs. A computer program called ETPS which is available from the web facilitates doing and checking such exercises.

Audience: This volume will be of interest to mathematicians, computer scientists, and philosophers in universities, as well as to computer scientists in industry who wish to use higher-order logic for hardware and software specification and verification.

1. Propositional Calculus.

2. First-Order Logic.

3. Provability and Refutability.

4. Further Topics in First-Order Logic.

5. Type Theory.

6. Formalized Number Theory.

7. Incompleteness and Undecidability

shop us with confidence

Summary

This introduction to mathematical logic starts with propositional calculus and first-order logic. Topics covered include syntax, semantics, soundness, completeness, independence, normal forms, vertical paths through negation normal formulas, compactness, Smullyan's Unifying Principle, natural deduction, cut-elimination, semantic tableaux, Skolemization, Herbrand's Theorem, unification, duality, interpolation, and definability.

The last three chapters of the book provide an introduction to type theory (higher-order logic). It is shown how various mathematical concepts can be formalized in this very expressive formal language. This expressive notation facilitates proofs of the classical incompleteness and undecidability theorems which are very elegant and easy to understand. The discussion of semantics makes clear the important distinction between standard and nonstandard models which is so important in understanding puzzling phenomena such as the incompleteness theorems and Skolem's Paradox about countable models of set theory.

Some of the numerous exercises require giving formal proofs. A computer program called ETPS which is available from the web facilitates doing and checking such exercises.

Audience: This volume will be of interest to mathematicians, computer scientists, and philosophers in universities, as well as to computer scientists in industry who wish to use higher-order logic for hardware and software specification and verification.

Table of Contents

1. Propositional Calculus.

2. First-Order Logic.

3. Provability and Refutability.

4. Further Topics in First-Order Logic.

5. Type Theory.

6. Formalized Number Theory.

7. Incompleteness and Undecidability

Publisher Info

Publisher: Kluwer Academic Publishers

Published: 2002

International: No

Published: 2002

International: No

The last three chapters of the book provide an introduction to type theory (higher-order logic). It is shown how various mathematical concepts can be formalized in this very expressive formal language. This expressive notation facilitates proofs of the classical incompleteness and undecidability theorems which are very elegant and easy to understand. The discussion of semantics makes clear the important distinction between standard and nonstandard models which is so important in understanding puzzling phenomena such as the incompleteness theorems and Skolem's Paradox about countable models of set theory.

Some of the numerous exercises require giving formal proofs. A computer program called ETPS which is available from the web facilitates doing and checking such exercises.

Audience: This volume will be of interest to mathematicians, computer scientists, and philosophers in universities, as well as to computer scientists in industry who wish to use higher-order logic for hardware and software specification and verification.

2. First-Order Logic.

3. Provability and Refutability.

4. Further Topics in First-Order Logic.

5. Type Theory.

6. Formalized Number Theory.

7. Incompleteness and Undecidability