Ship-Ship-Hooray! Free Shipping on $25+ Details >

Textbooks |
Buy Textbooks |
Titles For Elementary And Secondary Students Textbooks |
Physics - 9-12 Textbooks

Cover type: Hardback

Edition: 4TH 08

Copyright: 2008

Publisher: Prentice Hall, Inc.

Published: 2008

International: No

Edition: 4TH 08

Copyright: 2008

Publisher: Prentice Hall, Inc.

Published: 2008

International: No

List price: $323.00

Happy you, happy us. You get 24-hour turnaround. Free shipping on $25+, and dedicated customer service. Cue the smiley faces.

FREE Shipping on $25+

Order $25 or more and the shipping's on us. Marketplace items and other exclusions apply.

Ships tomorrow

Order by noon CST (Mon-Fri, excluding holidays). Some restrictions apply.

Easy 30-Day Returns

Not the right book for you? We accept returns within 30 days of purchase. Access codes are non-refundable once revealed or redeemed.

Ships directly from us

This title is currently not available in digital format.

Well, that's no good. Unfortunately, this edition is currently out of stock. Please check back soon.

Also available in the Marketplace starting at $118.47

Price | Condition | Seller | Comments |
---|

For the calculus-based General Physics course primarily taken by engineers and science majors (including physics majors). This long-awaited and extensive revision maintains Giancoli's reputation for creating carefully crafted, highly accurate and precise physics texts. Physics for Scientists and Engineers combines outstanding pedagogy with a clear and direct narrative and applications that draw the student into the physics. The new edition also features an unrivaled suite of media and on-line resources that enhance the understanding of physics.

This book is written for students. It aims to explain physics in a readable and interesting manner that is accessible and clear, and to teach students by anticipating their needs and difficulties without oversimplifying. Physics is a description of reality, and thus each topic begins with concrete observations and experiences that students can directly relate to. We then move on to the generalizations and more formal treatment of the topic. Not only does this make the material more interesting and easier to understand, but it is closer to the way physics is actually practiced.

shop us with confidence

Summary

For the calculus-based General Physics course primarily taken by engineers and science majors (including physics majors). This long-awaited and extensive revision maintains Giancoli's reputation for creating carefully crafted, highly accurate and precise physics texts. Physics for Scientists and Engineers combines outstanding pedagogy with a clear and direct narrative and applications that draw the student into the physics. The new edition also features an unrivaled suite of media and on-line resources that enhance the understanding of physics.

This book is written for students. It aims to explain physics in a readable and interesting manner that is accessible and clear, and to teach students by anticipating their needs and difficulties without oversimplifying. Physics is a description of reality, and thus each topic begins with concrete observations and experiences that students can directly relate to. We then move on to the generalizations and more formal treatment of the topic. Not only does this make the material more interesting and easier to understand, but it is closer to the way physics is actually practiced.

Table of Contents

CONTENTS OF VOLUME 1 APPLICATIONS LIST xii PREFACE xiv AVAILABLE SUPPLEMENTS AND MEDIA xxii NOTES TO STUDENTS (AND INSTRUCTORS) ON THE FORMAT xxiv COLOR USE: VECTORS, FIELDS, AND SYMBOLS xxv CHAPTER1: INTRODUCTION, MEASUREMENT, ESTIMATING 1-1 The Nature of Science 1-2 Models, Theories, and Laws 1-3 Measurement and Uncertainty; Significant Figures 1-4 Units, Standards, and the SI System 1-5 Converting Units 1-6 Order of Magnitude: Rapid Estimating *1-7 Dimensions and Dimensional Analysis SUMMARY QUESTIONS PROBLEMS GENERAL PROBLEMS CHAPTER 2: DESCRIBING MOTION: KINEMATICS IN ONE DIMENSION 2-1 Reference Frames and Displacement 2-2 Average Velocity 2-3 Instantaneous Velocity 2-4 Acceleration 2-5 Motion at Constant Acceleration 2-6 Solving Problems 2-7 Freely Falling Objects *2-8 Variable Acceleration; Integral Calculus *2-9 Graphical Analysis and Numerical Integration SUMMARY QUESTIONS PROBLEMS GENERAL PROBLEMS CHAPTER 3: KINEMATICS IN TWO OR THREE DIMENSIONS; VECTORS 3-1 Vectors and Scalars 3-2 Addition of Vectors-Graphical Methods 3-3 Subtraction of Vectors, and Multiplication of a Vector by a Scalar 3-4 Adding Vectors by Components 3-5 Unit Vectors 3-6 Vector Kinematics 3-7 Projectile Motion 3-8 Solving Problems Involving Projectile Motion 3-9 Relative Velocity SUMMARY QUESTIONS PROBLEMS GENERAL PROBLEMS CHAPTER 4: DYNAMICS: NEWTON'S LAWS OF MOTION 4-1 Force 4-2 Newton's First Law of Motion 4-3 Mass 4-4 Newton's Second Law of Motion 4-5 Newton's Third Law of Motion 4-6 Weight-the Force of Gravity; and the Normal Force 4-7 Solving Problems with Newton's Laws: Free-Body Diagrams 4-8 Problem Solving-A General Approach SUMMARY QUESTIONS PROBLEMS GENERAL PROB

Publisher Info

Publisher: Prentice Hall, Inc.

Published: 2008

International: No

Published: 2008

International: No

For the calculus-based General Physics course primarily taken by engineers and science majors (including physics majors). This long-awaited and extensive revision maintains Giancoli's reputation for creating carefully crafted, highly accurate and precise physics texts. Physics for Scientists and Engineers combines outstanding pedagogy with a clear and direct narrative and applications that draw the student into the physics. The new edition also features an unrivaled suite of media and on-line resources that enhance the understanding of physics.

This book is written for students. It aims to explain physics in a readable and interesting manner that is accessible and clear, and to teach students by anticipating their needs and difficulties without oversimplifying. Physics is a description of reality, and thus each topic begins with concrete observations and experiences that students can directly relate to. We then move on to the generalizations and more formal treatment of the topic. Not only does this make the material more interesting and easier to understand, but it is closer to the way physics is actually practiced.