Ship-Ship-Hooray! Free Shipping on $25+ Details >

by Roxy Peck and Jay L. Devore

Edition: 6TH 08Copyright: 2008

Publisher: Brooks/Cole Publishing Co.

Published: 2008

International: No

Well, that's no good. Unfortunately, this edition is currently out of stock. Please check back soon.

Available in the Marketplace starting at $39.07

Price | Condition | Seller | Comments |
---|

This book introduces you to the study of statistics and data analysis by using real data and attention-grabbing examples. The authors guide you through an intuition-based learning process that stresses interpretation and communication of statistical information. They help you grasp concepts and cement your comprehension by using simple notation?frequently substituting words for symbols.

1. THE ROLE OF STATISTICS AND THE DATA ANALYSIS PROCESS. 1.1 Three Reasons to Study Statistics. 1.2 The Nature and Role of Variability. 1.3 Statistics and the Data Analysis Process. 1.4 Types of Data and Some Simple Graphical Displays.

2. COLLECTING DATA SENSIBLY. 2.1 Statistical Studies: Observation and Experimentation. 2.2 Sampling. 2.3 Simple Comparative Experiments. 2.4 More Experimental Design. 2.5 More on Observational Studies: Designing Surveys. 2.6 Interpreting and Communicating the Results of Statistical Analyses.

3. GRAPHICAL METHODS FOR DESCRIBING DATA. 3.1 Displaying Categorical Data: Comparative Bar Charts and Pie Charts. 3.2 Displaying Numerical Data: Stem-and-Leaf Displays. 3.3 Displaying Numerical Data: Frequency Distributions and Histograms. 3.4 Displaying Bivariate Numerical Data. 3.5 Interpreting and Communicating the Results of Statistical Analyses.

4. NUMERICAL METHODS FOR DESCRIBING DATA. 4.1 Describing the Center of a Data Set. 4.2 Describing the Variability in a Data Set. 4.3 Summarizing a Data Set: Boxplots. 4.4 Interpreting Center and Variability: Chebyshev''s Rule, the Empirical Rule, and z Scores. 4.5 Interpreting and Communicating the Results of Statistical Analyses.

5. SUMMARIZING BIVARIATE DATA. 5.1 Correlation. 5.2 Linear Regression: Fitting a Line to Bivariate Data. 5.3 Assessing the Fit of a Line. 5.4 Nonlinear Relationship and Transformations. 5.5 Logistic Regression. 5.6 Interpreting and Communicating the Results of Statistical Analyses.

6. PROBABILITY. 6.1 Interpreting Probabilities and Basic Probability Rules. 6.2 Probability as a Basis for Making Decisions. 6.3 Estimating Probabilities Empirically and by Using Simulation.

7. POPULATION DISTRIBUTIONS. 7.1 Describing the Distribution of Values in a Population. 7.2 Population Models for Continuous Numerical Variables. 7.3 Normal Distributions. 7.4 Checking for Normality and Normalizing Transformations.

8. SAMPLING VARIABILITY AND SAMPLING DISTRIBUTIONS. 8.1 Statistics and Sampling Variability. 8.2 The Sampling Distribution of a Sample Mean. 8.3 The Sampling Distribution of a Sample Proportion.

9. ESTIMATION USING A SINGLE SAMPLE. 9.1 Point Estimation. 9.2 Large-Sample Confidence Interval for a Population Proportion. 9.3 Confidence Interval for a Population Mean. 9.4 Interpreting and Communicating the Results of Statistical Analyses.

10. HYPOTHESIS TESTING USING A SINGLE SAMPLE. 10.1 Hypotheses and Test Procedures. 10.2 Errors in Hypothesis Testing. 10.3 Large-Sample Hypothesis Tests for a Population Proportion. 10.4 Hypothesis Test for a Population Mean. 10.5 Power and Probability of Type II Error. 10.6 Interpreting and Communicating the Results of Statistical Analyses.

11. COMPARING TWO POPULATIONS OR TREATMENTS. 11.1 Inferences Concerning the Difference Between Two Population or Treatment Means Using Independent Samples. 11.2 Inferences Concerning the Difference Between Two Population or Treatment Means Using Paired Samples. 11.3 Large Sample Inferences Concerning a Difference Between Two Population or Treatment Proportions. 11.4 Interpreting and Communicating the Results of Statistical Analyses.

12. THE ANALYSIS OF CATEGORICAL DATA AND DOOGNESS-OF-FIT TESTS. 12.1 Chi-Square Tests for Univariate Data. 12.2 Tests for Homogeneity and Independence in a Two-way Table. 12.3 Interpreting and Communicating the Results of Statistical Analyses.

13. SIMPLE LINEAR REGRESSION AND CORRELATION INFERENTIAL METHODS. 13.1 Simple Linear Regression Model. 13.2 Inferences About the Slope of the Population Regression Line. 13.3 Checking Model Adequacy. 13.4 Inferences Based on the Estimated Regression Line. 13.5 Inferences About the Population Correlation Coefficient. 13.6 Interpreting and Communicating the Results of Statistical Analyses.

14. MULTIPLE REGRESSION ANALYSIS. 14.1 Multiple Regression Models. 14.2 Fitting a Model and Assessing Its Utility. 14.3 Inferences Based on an Estimated Model. 14.4 Other Issues in Multiple Regression. 14.5 Interpreting and C

shop us with confidence

Summary

This book introduces you to the study of statistics and data analysis by using real data and attention-grabbing examples. The authors guide you through an intuition-based learning process that stresses interpretation and communication of statistical information. They help you grasp concepts and cement your comprehension by using simple notation?frequently substituting words for symbols.

Table of Contents

1. THE ROLE OF STATISTICS AND THE DATA ANALYSIS PROCESS. 1.1 Three Reasons to Study Statistics. 1.2 The Nature and Role of Variability. 1.3 Statistics and the Data Analysis Process. 1.4 Types of Data and Some Simple Graphical Displays.

2. COLLECTING DATA SENSIBLY. 2.1 Statistical Studies: Observation and Experimentation. 2.2 Sampling. 2.3 Simple Comparative Experiments. 2.4 More Experimental Design. 2.5 More on Observational Studies: Designing Surveys. 2.6 Interpreting and Communicating the Results of Statistical Analyses.

3. GRAPHICAL METHODS FOR DESCRIBING DATA. 3.1 Displaying Categorical Data: Comparative Bar Charts and Pie Charts. 3.2 Displaying Numerical Data: Stem-and-Leaf Displays. 3.3 Displaying Numerical Data: Frequency Distributions and Histograms. 3.4 Displaying Bivariate Numerical Data. 3.5 Interpreting and Communicating the Results of Statistical Analyses.

4. NUMERICAL METHODS FOR DESCRIBING DATA. 4.1 Describing the Center of a Data Set. 4.2 Describing the Variability in a Data Set. 4.3 Summarizing a Data Set: Boxplots. 4.4 Interpreting Center and Variability: Chebyshev''s Rule, the Empirical Rule, and z Scores. 4.5 Interpreting and Communicating the Results of Statistical Analyses.

5. SUMMARIZING BIVARIATE DATA. 5.1 Correlation. 5.2 Linear Regression: Fitting a Line to Bivariate Data. 5.3 Assessing the Fit of a Line. 5.4 Nonlinear Relationship and Transformations. 5.5 Logistic Regression. 5.6 Interpreting and Communicating the Results of Statistical Analyses.

6. PROBABILITY. 6.1 Interpreting Probabilities and Basic Probability Rules. 6.2 Probability as a Basis for Making Decisions. 6.3 Estimating Probabilities Empirically and by Using Simulation.

7. POPULATION DISTRIBUTIONS. 7.1 Describing the Distribution of Values in a Population. 7.2 Population Models for Continuous Numerical Variables. 7.3 Normal Distributions. 7.4 Checking for Normality and Normalizing Transformations.

8. SAMPLING VARIABILITY AND SAMPLING DISTRIBUTIONS. 8.1 Statistics and Sampling Variability. 8.2 The Sampling Distribution of a Sample Mean. 8.3 The Sampling Distribution of a Sample Proportion.

9. ESTIMATION USING A SINGLE SAMPLE. 9.1 Point Estimation. 9.2 Large-Sample Confidence Interval for a Population Proportion. 9.3 Confidence Interval for a Population Mean. 9.4 Interpreting and Communicating the Results of Statistical Analyses.

10. HYPOTHESIS TESTING USING A SINGLE SAMPLE. 10.1 Hypotheses and Test Procedures. 10.2 Errors in Hypothesis Testing. 10.3 Large-Sample Hypothesis Tests for a Population Proportion. 10.4 Hypothesis Test for a Population Mean. 10.5 Power and Probability of Type II Error. 10.6 Interpreting and Communicating the Results of Statistical Analyses.

11. COMPARING TWO POPULATIONS OR TREATMENTS. 11.1 Inferences Concerning the Difference Between Two Population or Treatment Means Using Independent Samples. 11.2 Inferences Concerning the Difference Between Two Population or Treatment Means Using Paired Samples. 11.3 Large Sample Inferences Concerning a Difference Between Two Population or Treatment Proportions. 11.4 Interpreting and Communicating the Results of Statistical Analyses.

12. THE ANALYSIS OF CATEGORICAL DATA AND DOOGNESS-OF-FIT TESTS. 12.1 Chi-Square Tests for Univariate Data. 12.2 Tests for Homogeneity and Independence in a Two-way Table. 12.3 Interpreting and Communicating the Results of Statistical Analyses.

13. SIMPLE LINEAR REGRESSION AND CORRELATION INFERENTIAL METHODS. 13.1 Simple Linear Regression Model. 13.2 Inferences About the Slope of the Population Regression Line. 13.3 Checking Model Adequacy. 13.4 Inferences Based on the Estimated Regression Line. 13.5 Inferences About the Population Correlation Coefficient. 13.6 Interpreting and Communicating the Results of Statistical Analyses.

14. MULTIPLE REGRESSION ANALYSIS. 14.1 Multiple Regression Models. 14.2 Fitting a Model and Assessing Its Utility. 14.3 Inferences Based on an Estimated Model. 14.4 Other Issues in Multiple Regression. 14.5 Interpreting and C

Publisher Info

Publisher: Brooks/Cole Publishing Co.

Published: 2008

International: No

Published: 2008

International: No

1. THE ROLE OF STATISTICS AND THE DATA ANALYSIS PROCESS. 1.1 Three Reasons to Study Statistics. 1.2 The Nature and Role of Variability. 1.3 Statistics and the Data Analysis Process. 1.4 Types of Data and Some Simple Graphical Displays.

2. COLLECTING DATA SENSIBLY. 2.1 Statistical Studies: Observation and Experimentation. 2.2 Sampling. 2.3 Simple Comparative Experiments. 2.4 More Experimental Design. 2.5 More on Observational Studies: Designing Surveys. 2.6 Interpreting and Communicating the Results of Statistical Analyses.

3. GRAPHICAL METHODS FOR DESCRIBING DATA. 3.1 Displaying Categorical Data: Comparative Bar Charts and Pie Charts. 3.2 Displaying Numerical Data: Stem-and-Leaf Displays. 3.3 Displaying Numerical Data: Frequency Distributions and Histograms. 3.4 Displaying Bivariate Numerical Data. 3.5 Interpreting and Communicating the Results of Statistical Analyses.

4. NUMERICAL METHODS FOR DESCRIBING DATA. 4.1 Describing the Center of a Data Set. 4.2 Describing the Variability in a Data Set. 4.3 Summarizing a Data Set: Boxplots. 4.4 Interpreting Center and Variability: Chebyshev''s Rule, the Empirical Rule, and z Scores. 4.5 Interpreting and Communicating the Results of Statistical Analyses.

5. SUMMARIZING BIVARIATE DATA. 5.1 Correlation. 5.2 Linear Regression: Fitting a Line to Bivariate Data. 5.3 Assessing the Fit of a Line. 5.4 Nonlinear Relationship and Transformations. 5.5 Logistic Regression. 5.6 Interpreting and Communicating the Results of Statistical Analyses.

6. PROBABILITY. 6.1 Interpreting Probabilities and Basic Probability Rules. 6.2 Probability as a Basis for Making Decisions. 6.3 Estimating Probabilities Empirically and by Using Simulation.

7. POPULATION DISTRIBUTIONS. 7.1 Describing the Distribution of Values in a Population. 7.2 Population Models for Continuous Numerical Variables. 7.3 Normal Distributions. 7.4 Checking for Normality and Normalizing Transformations.

8. SAMPLING VARIABILITY AND SAMPLING DISTRIBUTIONS. 8.1 Statistics and Sampling Variability. 8.2 The Sampling Distribution of a Sample Mean. 8.3 The Sampling Distribution of a Sample Proportion.

9. ESTIMATION USING A SINGLE SAMPLE. 9.1 Point Estimation. 9.2 Large-Sample Confidence Interval for a Population Proportion. 9.3 Confidence Interval for a Population Mean. 9.4 Interpreting and Communicating the Results of Statistical Analyses.

10. HYPOTHESIS TESTING USING A SINGLE SAMPLE. 10.1 Hypotheses and Test Procedures. 10.2 Errors in Hypothesis Testing. 10.3 Large-Sample Hypothesis Tests for a Population Proportion. 10.4 Hypothesis Test for a Population Mean. 10.5 Power and Probability of Type II Error. 10.6 Interpreting and Communicating the Results of Statistical Analyses.

11. COMPARING TWO POPULATIONS OR TREATMENTS. 11.1 Inferences Concerning the Difference Between Two Population or Treatment Means Using Independent Samples. 11.2 Inferences Concerning the Difference Between Two Population or Treatment Means Using Paired Samples. 11.3 Large Sample Inferences Concerning a Difference Between Two Population or Treatment Proportions. 11.4 Interpreting and Communicating the Results of Statistical Analyses.

12. THE ANALYSIS OF CATEGORICAL DATA AND DOOGNESS-OF-FIT TESTS. 12.1 Chi-Square Tests for Univariate Data. 12.2 Tests for Homogeneity and Independence in a Two-way Table. 12.3 Interpreting and Communicating the Results of Statistical Analyses.

13. SIMPLE LINEAR REGRESSION AND CORRELATION INFERENTIAL METHODS. 13.1 Simple Linear Regression Model. 13.2 Inferences About the Slope of the Population Regression Line. 13.3 Checking Model Adequacy. 13.4 Inferences Based on the Estimated Regression Line. 13.5 Inferences About the Population Correlation Coefficient. 13.6 Interpreting and Communicating the Results of Statistical Analyses.

14. MULTIPLE REGRESSION ANALYSIS. 14.1 Multiple Regression Models. 14.2 Fitting a Model and Assessing Its Utility. 14.3 Inferences Based on an Estimated Model. 14.4 Other Issues in Multiple Regression. 14.5 Interpreting and C